RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2018

FIRST YEAR [BATCH 2017-20] **COMPUTER SCIENCE (Honours)**

Paper: II

Full Marks: 75

[Use a separate Answer Book for each group] Group - A [35 marks] Answer any one question : [1×5] 1. Suppose x[m][n] be a two dimensional array having m no. of rows and n no. of columns. a) Establish an address calculation formulae the location of x[p][q] using column major. [5] b) What do you mean by asymptotic notation? Develop an ADT for Doubly Linked List. [2.5+2.5]Answer **any three** questions from **Question Nos. 2 to 6** : [3×10] Implement the enqueue and dequeue functions of priority queue using Singly Linked List. [3+3] 2. a) Write down an algorithm to check whether the parenthesis of an arithmetic expression is correct b) or not. [4] 3. Convert the following infix expression into equivalent postfix expression using stack. [3] a) (A+B)*C-(D-E)/(F+G)b) How a polynomial such as $6x^{6} + 4x^{3} - 2x + 10$ can be represented by a linked list. [2] Write an algorithm to evaluate postfix expression. c) [5] Explain quick sort algorithm by designing a proper function. Show how quick sort algorithm will 4. a) [4+4] sort the following array in increasing order. 90, 7, 5, 120, 20, 1, 60, 10, 70, 30. "Quick sort algorithm is not stable but merge sort algorithm is stable" — Justify. [2] b) 5. Implement the following function : a) Split a Doubly Linked List from a specified position. [4] i) ii) Write an algorithm to delete all nodes having value greater than 'X' form a given Singly Linked List. [4] b) What do you mean by input restricted dequeue and output restricted dequeue. [2] Write an algorithm to delete the nth node of a Singly Linked List. The error conditions are to be 6. a) handled properly. [4] b) Compare and contrast between sequential search over binary search in terms of their performance. [2] Write a function to reverse a Singly Linked List. [4] c) **Group - B** [40 marks] Answer any four questions from Question Nos. 7 to 12 : [4×10] a) If $y = 4x^5 - 6x$, find the relative percentage error in y at x = 1, if the error in x = 0.05. 7. [2] b) Determine the number of correct digits in the number x, if it's absolute error is given as $E_{a} = 0.53 \times 10^{-2}$ and x = 0.4575. [1] c) Prove that $E \cdot \Delta = \Delta \cdot E$, where E and Δ carries their as usual meaning. [2] If a number be rounded to n correct significant figures, then the relative error is less than d) $\frac{1}{k+10^{n-1}}$, where $n \neq 1$ and k is the first significant figure in the number. [5]

8. a) Find $\int_{-1}^{10} \frac{1}{1+x^2} dx$ using Simpson's one third rule. (Here step size is h = 1). [5]

: 19/05/2018 Date

Time : 11 am – 3 pm

	b)	 Describe the geometrical interpretation of Trapezoidal Rule. State composite Simpson's ¹/₃ rd rule to evaluate the value of finite integral. 					
	c)						
9.	a) b) c)	Using Bi-section method find the root of $3x - \cos x - 1 = 0$. Correct up to five decimal places. Derive the condition for convergency of Newton-Raphson method. Explain procedural difference between Regula-Falsi and Secant method.					
10.	a)	If any system of equations be represented as AX = B, then what will be the conditions for following cases : i) solution of the system is unique ii) system has infinite numbers of solution iii) system has no solution.					
	b)	s Jordon method solve the system of equations : = 8	[5]				
		2x + 3y + 4x	z = 20				
		4x + 3y + 2z = 16					
	c)	Using fourth	order Runge-Kutta method, compute y(0.2), given $\frac{dy}{dx} = x^2 + y^2$ with y(0) = 0 and h = 0.1.	[3]			
11.	a) Solve the following Linear programming pro		ollowing Linear programming problem graphically.	[3]			
		Maximize	$Z = 2x_1 - x_2$				
		Subject to	$\mathbf{x}_1 - \mathbf{x}_2 \leq 1$				
			$x_1 \leq 3$				
		and	$\mathbf{x}_1, \mathbf{x}_2 \ge 0$				
	b)	b) What is basis? Explain with example.					
	c)	c) Solve the following L.P.P using Simplex method.					
		Maximize	$Z = 30x_1 + 25x_2$				
		Subject to	$x_1 + 2x_2 \le 40$				
			$3x_1 + 2x_2 \le 60$				
		and	$\mathbf{x}_1, \mathbf{x}_2 \ge 0$				
12.	a)	For the transportation problem given by the following table, find the solution by the North-West					

12. a) For the transportation problem given by the following table, find the solution by the North-West corner and Matrix Minima method. Which method gives the better solution? [5]

	А	В	С	Supply
	9	15	12	10
	6	8	13	23
	9	3	11	27
Demand	21	14	25	

b) Find the optimal assignments for the assignment problem with the following profit matrix. [5]

	а	b	с	d	e
1	32	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39
			~		
			– x —		_

(2)